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Abstract
BACKGROUND: Recent Alzheimer’s disease (AD) trials have 
faced significant challenges to enroll pre-symptomatic or early 
stage AD subjects with biomarker positivity, minimal or no 
cognitive impairment, and likelihood to decline cognitively 
during a short trial period. Our previous study showed that 
digital cognitive biomarkers (DCB), generated by a hierarchical 
Bayesian cognitive process (HBCP) model, were able to 
distinguish groups of cognitively normal individuals with 
impending cognitive decline from those without. We generated 
DCBs using only baseline Auditory Verbal Learning Test’s 
wordlist memory (WLM) item response data from the Mayo 
Clinic Alzheimer’s Disease Patient Registry.
OBJECTIVES: To replicate our previous findings, using baseline 
ADAS-Cog WLM item response data from the Alzheimer’s 
Disease Neuroimaging Initiative, and compare DCBs to 
traditional approaches for scoring word-list memory tests. 
DESIGN: Classified decliner subjects (n = 61) as those who 
developed amnestic MCI or AD dementia within 3 years of 
normal baseline assessment and non-decliner (n = 442) as those 
who did not.
MEASURES: Evaluated the relative value of DCBs compared to 
traditional measures, using three analytic approaches to group 
differences: 1) logistic regression of summary scores per ADAS-
Cog WLM task; 2) Bayesian modeling of summary scores; and 
3) HBCP modeling to generate DCBs from item-level responses.
RESULTS: The HBCP model produced posterior distributions of 
group differences, of which Bayes factor assessment identified 
three DCBs with notable group differences: Immediate Retrieval 
from Durable Storage, (BFds = 11.8, strong evidence); One-Shot 
Learning, (BFds = 4.5, moderate evidence); and Partial Learning 
(BFds = 2.9, weak evidence). In contrast, logistic regression of 
summary scores did not significantly discriminate between 
groups, and the Bayes factor assessment of modeled summary 
scores provided moderate evidence that the groups were 
equivalent (BFsd = 3.4, 3.1, 2.9, and 1.4, respectively). 
CONCLUSIONS: This study demonstrated DCBs’ ability to 
distinguish , at baseline, between impending cognitive decline 
and non-decline groups where individuals in both groups were 
classified as cognitively normal. This validated findings from 
our previous study, demonstrating DCBs’ advantages over 
traditional approaches. This study warrants further refinement 

of the HBCP DCBs to predict impending cognitive decline 
in individuals and other factors associated with AD, such as 
physical biomarker load.

Key words: Wordlist memory test, digital cognitive biomarkers, 
preclinical Alzheimer’s disease, clinical trial, Bayesian modeling.

Introduction

The major socioeconomic and healthcare 
burdens imposed by Alzheimer’s disease (AD) 
have pushed the focus of clinical research 

dramatically toward prevention and treatment in pre-
symptomatic stages (1, 2). This shift has been well-
aligned with guidance from the FDA in support of earlier 
stage therapies and new measurement methodologies 
for establishing clinically meaningful effects of those 
therapies (3). 

However, recent AD trials have faced significant 
challenges identifying and enrolling subjects who meet 
thresholds for AD biomarker positivity but who have not 
yet experienced notable cognitive deficits. Despite great 
efforts made to enroll subjects in pre-clinical or early 
stage AD, trial sponsors have seen screen failure rates 
as high as 80%, primarily driven by required biomarker 
thresholds in cognitively normal subjects, leading to 
significantly prolonged enrollment periods and increased 
costs (4-9).  

This underscores an urgent need for better approaches 
to pragmatically and cost effectively identify subjects 
who: 1) are cognitive normal; 2) will decline cognitively 
within 1-3 years; and 3) are likely to have PET scan 
positive AD biomarkers. Having such predictive 
capabilities will accelerate enrollment of specific subjects 
and will also improve study design for potentially shorter 
trial durations. The present study focuses on predicting 
impending cognitive decline in cognitively normal 
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subjects. Predicting positivity for AD biomarkers will be 
discussed in a future publication.

Many efforts have focused on developing more 
sensitive cognitive assessment tools (e.g., composite 
scoring), including PACC (10) and ADCOMS (11). While 
some recently validated assessment tools can outperform 
less sensitive tools developed to assess dementia severity, 
as a group they lack the capability to predict impending 
cognitive decline in cognitively normal subjects. 

One such assessment approach could arise from the 
application of hierarchical Bayesian cognitive process 
(HBCP) models to item-response data from a wordlist 
memory (WLM) test. This approach can generate 
digital cognitive biomarkers (DCB) that correspond to 
underlying cognitive processes of encoding, storage, and 
retrieval into and from various states of learning and 
memory (Figure 1). Such underlying cognitive processes 
cannot be directly observed or measured, while DCBs 
can quantify these processes, providing insights into 
cognitive function that traditional assessment approaches 
cannot provide. The details of this HBCP model and 
the generation of DCBs have been previously discussed 
elsewhere (12). 

The HBCP model can quantify underlying cognitive processes that cannot be 
observed or measured using the traditional approaches, and provide significant 
insights into how each cognitive process is affected by different conditions. 
Parameter r corresponds to one-shot learning; a, partial leaning; v, consolidation; 
b, testing effect; t, immediate retrieval from transient storage; L1, immediate 
retrieval from durable storage; and L2, delayed retrieval from durable storage. 

In our previous work, HBCP-generated DCBs 
demonstrated the ability to distinguish groups of 
individuals with impending cognitive decline from those 
who would remain cognitively normal, using baseline, 
item-response data from a WLM test. This study was 
conducted using Auditory-Verbal Learning Test (AVLT) 
item response data from the Mayo Clinic Alzheimer’s 
Disease Patient Registry (13). Subjects, including those 
with normal cognition at baseline who would progress 
to amnestic MCI and those who would progress to 
AD dementia, were compared to those who would 
not decline. Bayes factor assessment identified notable 
reductions in Immediate Retrieval from Durable Storage, 
L1 (BFds = 30.4), and Delayed Retrieval from Durable 
Storage, L2 (BFds > 100). This study also appeared to 
identify compensatory increases in One-shot Learning, 
r (BFds = 3.2); Partial Learning, a (BFds = 10.8); and 

Consolidation, v (BFds = 13.5). However, subsequent work 
with our HBCP model did not replicate this apparent 
compensatory effect (12).

The present study, using baseline data from a novel 
WLM dataset, was designed to replicate our previous 
findings of deficits in retrieval DCBs for a group of 
individuals with impending cognitive decline due to 
AD, and compared this outcome to those generated by 
traditional scoring approaches. Replicating these results 
supports the role of DCBs for accelerating the clinical 
trial recruitment process and could greatly benefit future 
decisions about clinical trial study designs.

Methods

We used baseline ADAS-Cog WLM item response 
data from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI: www.adni-info.org) database (adni.loni.
usc.edu). The ADNI was launched in 2003 as a public-
private partnership with the primary goal to test whether 
serial magnetic resonance imaging, positron emission 
tomography, other biological markers, and clinical and 
neuropsychological assessment can be combined to 
measure the progression of mild cognitive impairment 
and early AD. 

From the ADNI dataset, we classified non-decliner 
subjects (n = 442) as those whose diagnosis remained 
normal for 3 or more years after normal baseline 
assessment and decliner subjects (n = 61) as those who 
developed amnestic MCI or AD dementia within 3 years 
of normal baseline assessment. Table 1 shows sample 
characteristics.

Three analytic approaches were compared to 
demonstrate the relative value of DCBs.

Table 1. ADNI Sample Characteristics
Non-decliner Decliner Total

Sample size (%) 552 (87.87) 61 (12.13) 503 (100)

Female, count (%) 234 (52.94) 23 (37.7) 257 (51.09)

Age in yrs., M (SD) 73.99 (5.81) 75.61 (6.68) 74.18 (5.94)

Education in yrs., M (SD) 16.46 (2.69) 15.84 (2.96) 16.38 (2.73)

Logistic Regression

Traditional summary scores per ADAS-Cog task 
were assessed for group differences. Logistic regression 
modeling was performed with individual subjects’ 
summary scores for immediate free recall tasks 1 through 
3 and for the delayed free recall task, each included as 
predictors of impending cognitive decline as the outcome.

Figure 1. Hierarchical Bayesian Cognitive Process Model
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Bayesian Modeling

A Bayesian model of summary scores was assessed. 
Gaussian distributions were fitted to individuals’ number 
of items recalled, from 1 to 10, and uniform distributions 
for probability of 0 items recalled, on each free recall task.

HBCP Model

The HBCP model was applied to non-decliner and 
decliner group item response data, aggregated across 
subjects within each group. The model estimated DCBs 
across WLM items with the Batchelder multinomial 
processing tree model of memory for each item’s recall 
pattern across the four free recall tasks (12).

Results

Logistic regression of summary scores generated 
β coefficients (Table 2) that did not significantly 
discriminate between groups, either individually or 
across the test as a whole.

Bayes Factor assessment of  f i t ted Gaussian 
distributions to each free recall task by summary score 
measurement provided moderate evidence that the 

groups were measurably equivalent (BFsd = 3.4, 3.1, 2.9, 
and 1.4, respectively; Figure 2). 

The HBCP model produced posterior distributions of 
group differences (Figure 3). Bayes Factor assessment 
identified three DCBs with notable group differences: 
Immediate Retrieval from Durable Storage, L1 (BFds = 
11.8, strong evidence), One-shot Learning, r (BFds = 4.5, 
moderate), and Partial Learning, a (BFds = 2.9, weak). 

Discussion

The present study validated our previous findings by 
demonstrating the HBCP DCBs’ ability to distinguish a 
group of cognitively normal individuals with impending 
cognitive decline from a group that would remain 
cognitively normal. This study also showed DCBs’ 
advantages over the traditional approach of summary 
score assessments and their applicability for detection 
of impending cognitive decline in asymptomatic AD 
patients. 

The HBCP DCBs have an advantage over composite 
or summary score approaches because of their ability to 
measure and quantify underlying cognitive processes 
(Figure 1). Among these processes, only some are affected 
in the cognitively normal or pre-clinical stages of AD (14), 
and each is affected differently as the disease progresses 

Table 2. Summary Score Logistic Regression Analysis
Summary Score, M (SD) Logistic Regression

Task/Predictor Non-decliner Decliner β (SE) OR p

IFR 1 4.55 (2.09) 4.41 (2.00) 0.01 (0.13) 1.01 .918
IFR 2 5.71 (2.52) 5.61 (2.41) 0.17 (0.17) 1.18 .317
IFR 3 5.97 (2.59) 5.74 (2.49) -0.11 (0.16) 0.89 .482
DFR 4.91 (3.00) 4.52 (2.66) -0.09 (0.09) 0.92 .349
Constant -- -- -1.92 0.15 < .001
Note. IFR = Immediate Free Recall; DFR = Delayed Free Recall; OR = Odds Ratio. χ2(498) = 2.18, pseudo-R2 = -.005, p = .702.

Figure 2. Bayes Factors for Summary Score Group Difference Parameters 

Posterior distributions of Bayesian-modeled summary scores and posterior distributions of mean differences across ADAS-Cog tasks are presented, with Savage-Dickey 
density ratio Bayes factors calculated for mean differences against prior distributions of no change.
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(15). The HBCP model can also be applied to any 
existing, well-validated, WLM test protocol (e.g., AVLT, 
ADAS-Cog, MCI Screen), so DCBs can be generated 
on WLM data from past academic studies and clinical 
trials to examine which processes were improved by 
particular AD therapies (16) and which were not, even 
when traditional outcome measures identified no overall 
differences. This will provide novel insights into efficacy 
and trial design, potentially targeting different cognitive 
or disease processes. 

This study warrants further development of the HBCP 
DCBs to predict impending cognitive decline at the 
individual level and to predict other factors associated 
with AD, such as the identification of stage progression, 
the accumulation of biomarkers, and the presence of 
other cognition-impairing conditions.
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Figure 3. Bayes Factors for HBCP DCB Notable Group Difference Parameters  

Posterior distributions of DCB mean differences are presented against prior distributions of no change for three parameters with notable group differences, along with 
Savage-Dickey density ratio Bayes factors.


